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Employing the formalism introduced by Sinai and Yakhot[Phys. Rev. Lett.63, 1962(1989)], we study the
probability density functions(pdf’s) of decaying passive scalars in periodic domains under the influence of
smooth large scale velocity fields. The particular regime we focus on is one where the normalized scalar pdf’s
attain a self-similar profile in finite time, i.e., the so-called strange or statistical eigenmode regime. In accor-
dance with the work of Sinai and Yakhot, the central regions of the pdf’s are power laws. However, the details
of the pdf profiles are dependent on the physical parameters in the problem. Interestingly, for small Peclet
numbers the pdf’sresemblestretched or pure exponential functions, whereas in the limit of large Peclet
numbers, there emerges a universal Gaussian form for the pdf. Numerical simulations are used to verify these
predictions.
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I. INTRODUCTION

We examine the probability density functions(pdf’s) of
decaying passive scalars without mean gradients under the
action of smooth, incompressible, and time aperiodic flows
in bounded periodic domains. In this situation the evolution
of a passive scalar,fsx,y,td, is governed by the advection-
diffusion (AD) equation:

] f

] t
+ suW · =df = k¹2f. s1d

Here k represents the molecular diffusivity of the passive
scalar anduWsx,y,td is the advecting velocity field. The do-
main sDd under consideration is periodic, specifically we
takeD to be f0,2pg3 f0,2pg with opposite sides identified
si.e., a 2-torusd.

In this work, we consider time aperiodic velocity fields
whose spatial scale of variation is comparable to the scale of
the domain. Essentially, the flows are of the type encountered
in chaotic advection[1] and the parameters correspond to
relatively large Peclet numbers. We focus on the case where
the normalized scalar pdf’s attain a self-similar profile. This
self-similar regime was first described by Pierrehumbert
[2,3] (who named it a strange or statistical eigenmode) and
has recently been examined in detail by Fereday and Haynes
[4] (hereafter FH), Liu and Haller[5], and also by Sukhatme
and Pierrehumbert[6] (hereafter SP). These studies indicate
that the self-similar regime is the appropriate long-time so-
lution to the AD equation in bounded periodic domains.1

Physically, the ingredients in the balance responsible for this
self-similar state are(i) a limit on how thin filaments can get
(as k.0) and (ii ) the “folding and filling” of filaments in-
duced by the finite domain.2

For clarity, we introduce the following scales:L—the
scale of the domain,lv—the scale of variation of the velocity
field, andlsstd—the maximum scale of variation of the scalar
field. In terms of these scales the self-similar strange eigen-
mode is characterized bylsstd, lv,Ł. Due to this similarity
of scales the problem possesses a global nature(see FH and
SP). Hence, approximations based on scale separation(such
as shifting to a comoving reference frame), which have
yielded excellent results in other smooth advection-diffusion
regimes—sometimes referred to as the Batchelor regime(see
Ref. [15], [16], or [17] for a recent review)—cannot be fruit-
fully utilized. Also, when lsstd! lv,Ł (i.e., the Batchelor
regime), it has been demonstrated that the pdf’s are nonuni-
versal, i.e., their shape evolves in time[16]. Obviously, in
such a situation there is no limiting scalar pdf and the theory
of Sinai and Yakhot[18], which a priori assumes the exis-
tence of such a limit, fails.

Indeed, it is the attainment of a self-similar, i.e., limiting,
pdf profile in finite time that makes the strange eigenmode
regime a suitable candidate for applying the Sinai-Yakhot
formalism.

II. THE PDF EQUATION

Consider the dimensionless normalized variableX
=f / kf2l1/2, where k·l represents a spatial average. By as-
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1Note that, in contrast to the present statistical or strange eigen-

mode, when the velocity fields aretime periodic, at long times the
scalar field represents a periodic eigenfunction of the AD operator.
Regarding these periodic eigenfunctions, or spatially repeating pat-
terns, see Ref.[7] for experimental results, SP for a physical inter-
pretation,[8] for more recent work,[5] for a mathematically rigor-

ous presentation, and[9] for an interpretation in terms of the
Perron-Frobenius operator induced by the underlying trajectory
problem. Also, see Refs.[10,11] for similar ideas in the case of
steady(3D) and (2D) flows, respectively.

2It is worth mentioning that this self-similar regime is different
from that noted in decaying scalar turbulence[12–14]. In those
studies the advecting velocity field is turbulent(i.e., spatially
“rough”) whereas here we are concerned with smooth velocity
fields.
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suming the stationarity in time ofkX2nl for all n, Sinai and
Yakhot [18] showed

s2n − 1dKX2n−2s=fd2

Q1
L = kX2nl, s2d

where Q1=ks¹fd2l. Further utilizing Eq.s2d, they showed
that the pdf ofX is given by sdenoting the sample space
variable by the same symbold

PsXd =
C1

gsXd
expF−E

0

X u

gsud
duG , s3d

wheregsXd represents the conditional expectation of the nor-
malized dissipation, i.e.,gsXd=ks¹fd2/Q1uXl. As it turns
out, later workf19–22g ssee Ref.f23g for an overviewd clari-
fied that the pdf of any statistically homogenous twice dif-
ferentiable random field, saycsxW ,td, is given byf22,24g

Psc,td =
C2

gsc,td/Q2
expFE

0

c rsu,td
gsu,td

duG . s4d

Q2=ks=Xd2l and rsc ,td=ks¹2cducl, gsc ,td=ks¹cd2ucl rep-
resent the conditional diffusion and conditional dissipation
respectively. Furthermore, it was shown that if the moments
of csxW ,td are stationary, thenf24,25g,3

rsc,td = −
ks=cd2l

kc2l
c. s5d

Of course, Eq.s5d, when substituted in Eq.s4d yields a pdf
similar to the Sinai-Yakhot expression, i.e., Eq.s3d.

A. Conditional statistics in the strange eigenmode regime

In the strange eigenmode regime, starting withlsst=0d
, lv,L,4 after a transient period, it is seen that(see SP and
FH)

kufsx,y,tdunl , e−ant; t . T, s6d

whereT represents the duration of the transient period. More
importantly,an=na1; this linearity implies the stationarity of
the moments of the normalized scalar field.5 Of course, given
the stationarity, we are justified in using Eq.s5d, with X
replacingc. Substituting in Eq.s5d from Eq. s6d we get

rsX,td = rsXd = −
ks¹Xd2l

kX2l
X = −

a2

2k
X. s7d

Regarding the conditional dissipation, ifX and=X are inde-
pendent, thengsX,td=ks=Xd2l. This coupled with the fact

that gsX,td is even led Sinai and Yakhot to propose the ex-
pansionsin the vicinity of X=0d f18g

gsX,td = gsXd = ks=Xd2l + bX2 + ¯ ;b =
1

2
U ]2g

] X2U
X=0

.

s8d

Substituting from Eq.s6d, we havesto orderX2d

gsXd =
a2

2k
S1 +

2kb

a2
X2D . s9d

Furthermore, the normalized conditional diffusion and dissi-
pation areRsXd=rsXd / ks=Xd2l andGsXd=gsXd / ks=Xd2l, re-
spectively. Using Eqs.s7d and s9d,

RsXd = − X; GsXd = 1 +
2kb

a2
X2. s10d

Recent numerical workssee FHd suggests thata2 tends to a
nonzero limit ask→0, hence Eq.s10d gives GsXd→1, as-
suming thatb does not overwhelm the limit. In other words,
keeping the assumption regardingb in mind, X and=X tend
to become independent ask→0 and we expect the core of
the pdf to tend to a universal Gaussian profile.

Further substituting Eqs.(7) and(9) in Eq. (4) yields (the
central part of) the pdf ofX to be

PsXd = C2F1 +
2kb

a2
X2G−g

; g = 1 +
a2

4kb
. s11d

Note that, even though the power law is in agreement with
the work of FH, their arguments apply to the tail of the pdf
whereas the above expression is valid in the vicinity ofX
=0. For further elucidation, definingd=2kb /a2, let us ex-
amine how the shape ofPsXd behaves withd. In terms ofd,

PsXd = C2f1 + dX2g−g; g = 1 +
1

2d
. s12d

For larged we haveg→1, lnfPsXdg→−lns1+dX2d. As both
d andX areOs1d quantities, all powers ofX contribute to
lnfPsXdg. On the other hand, for smalld we have g
→1/2d and lnfPsXdg,−X2/2, which is the expected out-
come from the earlier discussion. Profiles ford
=10,0.7,0.001 areshown in Fig. 1. Note that, asd de-
creasesPsXd goes fromresemblinga stretched exponential
to pure exponential tosexpectedd Gaussian function.

III. NUMERICAL INVESTIGATION

The AD equation was approximated by a lattice map[3]
followed by diffusion in Fourier space. The velocity field is
of a single large scale; specifically, we employ the sine flow
[26,27]

usx,y,td = fstdA1sinsy + pnd,

vsx,y,td = f1 − fstdgA2sinsx + qnd, s13d

where fstd is 1 for nTø t, sn+1dT/2 and 0 forsn+1dT/2
ø t, sn+1dT. pn,qn sPf0,2pgd are random numbers se-

3Ching and Kraichnan[24] hint at the possibility of attaining sta-
tionary normalized moments by utilizing a cyclic domain; the self-
similar strange eigenmode appears to be precisely this case.

4Other initial conditions, especiallylsst=0d! lv,L entail an evo-
lution of the scalar field through distinct regimes(see SP and FH for
details)

5The exponential decay of moments is also valid whenlsstd! lv,
but in this casean is a nonlinear function of the moment ordern,
i.e., the moments are not stationary[16].
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lected at the beginning of each iteration, i.e., for each period
T. A1,A2 control the strength of the flow. The flow is imple-
mented as a 2D lattice mapsxn,ynd→ sxn+1,yn+1d [3,27]. A
key feature is that the randomness due topn,qn breaks any

barriers which may, and generally do, exist in 2D area pre-
serving mappings[28].

A typical example. Starting with a mean zero checker-
board initial condition on a 2563256 grid sA1=A2=2,k

FIG. 2. Typical evolution sce-
nario with k=9.33310−4. Upper
panel shows lnskX2nld vs iteration
for n=1,2,3, and 4. The middle
panel shows the pdf’s from itera-
tions 10–110(solid lines at itera-
tions 10 and 110) The lowermost
panel shows the pdf’s from itera-
tion 150 to 350, i.e., when the nor-
malized moments have become
stationary.

FIG. 1. lnfPsXdg vs X from Eq.
(11) for differing d.
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=9.33310−4d, a typical evolution scenario is shown in Fig.
2. As is seen, the normalized moments attain constant values
after a transient period of about 70 iterations.6 During this
transient periodPsXd evolves (a remnant of the initial
double-d pdf can be seen at iteration 10). Finally, after the
moments become stationary,PsXd attains a self-similar pro-
file as is seen in lowermost panel of Fig. 2.7

Peclet number dependence. To investigate the effect of
changing the Peclet number, we run a set of simulations with
(a) fixed flow strength and varying diffusivity and(b) fixed
diffusivity and varying flow strengths.

(1) Varying the diffusivity: KeepingA1,A2 fixed and uti-
lizing the same checkerboard initial condition, we varyk. In
each case the evolution of the pdf is similar to that shown in
Fig. 2. The pdf’s fork=2310−3 and k=5.78310−4 in the
self-similar stage are displayed in Fig. 3. With respect to the
analytical pdf, i.e., Eq.(11), even thoughb is an unknown
the qualitative similarity between Figs. 3 and 1 is evident
(essentially, the dependence ofa2 on k is fairly weak; when
k changes by an order of magnitude, as in the above simu-
lation, a2 changes by a much smaller amount). The corre-
sponding plots of the normalized conditional dissipation are
shown in Fig. 4. Note that for smallk, we haveGsXd,1.

Also, from Fig. 4 we see that for smallk the range ofX is
quite small, hence in this situation the Gaussian form de-
scribes a fairly large part of the complete pdf. Next, in Fig. 5
we show the pdf’s for a number of small diffusivities.
Clearly, the core ofPsXd tends to a universal Gaussian form.

(2) Varying the strength of the flow: Fixingk=10−3 we
vary A1,A2. The decay of the scalar variance for different
flow strengths can be seen in Fig. 6. Evidently,a2~ flow
strength, therefore for a fixedk, d~1/(flow strength). The
implication being that the core ofPsXd should tend to a
Gaussian function for stronger flows. Figure 7 shows the
pdf’s (in the self-similar stage) for two different flow
strengths—note the similarity to Fig. 3. Furthermore, Fig. 8
shows the pdf’s for a number of simulations with stronger
flows. Once again, the emergence of a universal Gaussian
core is evident. Also, note the similarity to Fig. 5.

IV. CONCLUSION AND DISCUSSION

By applying the formalism introduced by Sinai and Ya-
khot [18] to a decaying passive scalar obeying the AD equa-
tion in a periodic domain, we obtained an expression for the
pdf of the normalized scalar field. Broadly categorized as a
power law, the core of the pdf was shown to be dependent on
the physical parameters in the AD problem. Moreover, we
saw the emergence of a universal Gaussian core for the pdf
in (a) the limit of small diffusivity for a fixed flow strength
and(b) the limit of strong flows for fixedk. Combining these
observations we infer the emergence of a universal Gaussian
core in the limit of large Peclet numbers. Note that, the de-
tailed dependence on Peclet number is not straightforward as
PsXd is a function of botha2 and k [Eq. (11)]—in turn a2

depends both onk and flow strength. Interestingly, for

6The transient period may appear large, but it is important to note
that the strange eigenmode appears only after the scalar field has
folded and filled the domain(see SP and FH for details). Whereas,
significant decay of the variance starts much before this time, spe-
cifically when the diffusive scale is reached.

7It is important to keep in mind that these results are for large
Peclet numbers. In fact, in numerical runs with smaller Peclet num-
bers, even at large times,kX2nl fluctuates with a fairly large ampli-
tude.

FIG. 3. Self-similar pdf’s for
k=2310−3 (dashed) and k=5.78
310−4 (solid).
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smaller Peclet numbers(i.e. largerd) the power-law pdf pro-
file resembles a pure or stretched exponential function. We
believe that this is the reason for the misidentification of pdf
profiles in earlier work[3] (and also SP).

An intriguing, though poorly understood, feature of the
strange eigenmode regime is the actual decay rate of the
scalar variance—i.e.,a2. Before concluding we would like to

put forth a plausible connection between the eigenmode re-
gime and homogenization theory, with the hope of shedding
some light ona2. Broadly, in the realm of homogenization
theory it has been possible to show the convergence, in a
coarse grained sense, of the AD equation to a pure diffusion
equation for a variety of advecting velocity fields(see Sec. 2
of Ref. [29] or [30] for recent reviews). The most common

FIG. 4. The normalized condi-
tional dissipationfGsXdg vs X for
the same set of diffusivities as in
Fig. 3. Note the range of the axes
in the two subplots.

FIG. 5. pdf’s for k=1.11
310−3, 9.33310−4, 7.56310−4,
and 5.78310−4. The emergence
of a universal Gaussian core.
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situation is whenlv! lsstd, i.e., velocity fields changing rap-
idly in space but combined with either steadiness or period-
icity in time [29,31]. The opposite limit, along the lines of
the work by Kubo[32], is where the velocity fields have
longe range spatial correlations but change rapidly in time
(see Sec. 2.4.1 of Ref.[29] or [30]).

Indeed, it is this second limit where the effective diffusiv-
ity of the scalar field is given by the Taylor-Kubo formula

[30]. Recent work has shown that such a diffusive limit ex-
ists for a broader class of velocity fields, though the formula
for the effective diffusivity may not be analytically tractable
[33,34]. Noting the long range spatialslv,Ld and short time
(randomness at each iteration) correlations of the velocity
field required for the emergence of the self-similar eigen-
mode, we conjecture that the strange eigenmode may be un-
derstood as a homogenization phenomenon. Hence, at long

FIG. 6. Decay of the variance
with fixed k and varying flow
strengths. Clearly, a2~ flow
strength.

FIG. 7. lnfPsXdg vs X in the
self-similar stage for sA1,A2d
=s1,1d (dashed curves) and
sA1,A2d=s2.6,2.6d.
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times, averages such askfnl obey the diffusion equation, in
particular a2 can be interpreted as an effective diffusivity
akin to the Taylor-Kubo formula. Not only does this inter-
pretation lend qualitative support to the observed dependence
of a2 on k as well as the velocity field, it also implies the
linearity of an with n.
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